Рейтинг брокеров бинарных опционов
2018

Кто такие брокеры бинарных опционов Как выбрать брокера бинарных опционов Надежные брокеры бинарных опционов Честные брокеры бинарных опционов Лучшие брокеры
бинарных опционов
2018

7.3. Свертка

Другим направлением решения задачи многокритериального анализа является отказ от множества критериев путем сведения их к одному. Простейший подход, когда один критерий считают главным и упорядочивают лишь по нему, а остальные используют, только если у двух альтернатив значения главного критерия одинаковы (если одинаковы значения и главного, и второго по важности критерия, используют третий и т.д.), оказывается удовлетворительным лишь в редких случаях. Обычно среди критериев невозможно выделить важнейший. Лучше работают методы, учитывающие все значения вектора критериев. Такие составные критерии принято именовать свертками.

Рассмотрим основные способы свертки критериев. Сумма критериев представляет собой аддитивную свертку. Умножение значений критериев на весовые коэффициенты позволит придать им разную степень важности -чем больше вес критерия, тем большее влияние он окажет на окончательный результат отбора.

Альпари

Произведение критериев является мультипликативной сверткой. В этом случае, подобно введению весов в аддитивной свертке, можно перед перемножением критериев возвести их в степень тем большую, чем больше важность, придаваемая критерию. Очевидно, что мультипликативная свертка оправданна, если критерии неотрицательны–иначе правило «минус на минус дает плюс» сыграет с нами плохую шутку, сделав «хорошее» значение свертки из двух заведомо плохих критериев. Впрочем, если только один из критериев принимает отрицательные значения, подобного рода парадоксы не возникают, и мы можем пользоваться мультипликативной сверткой. Также нужно учитывать, что если один из критериев равен нулю, то и мультипликативная свертка равна нулю, для аддитивной же свертки такое правило не выполняется. Вообще, в мультипликативной свертке по сравнению с аддитивной большее влияние оказывают те критерии, которые для данного объекта имеют низкие значения.

Аддитивная свертка наиболее приемлема для критериев, представляющих собой однородные по смыслу и близкие по масштабу значений величины, каковыми в нашей классификации являются прогнозные критерии. Например, комбинируя «математическое ожидание прибыли по логнормальному распределению» и «математическое ожидание прибыли по эмпирическому распределению», естественно взять в качестве критерия их сумму. С другой стороны, для свертывания таких классов критериев, как «математическое ожидание прибыли» и «вероятность прибыли» (по любому из распределений), лучше применять мультипликативную свертку. В этом случае мы используем полезное свойство произведения – если прогнозируемая вероятность прибыли близка к нулю, то и сводный критерий также будет стремиться нулю. Впрочем, в применении произведения есть дополнительная тонкость – если матожидание прибыли отрицательно, то, умножая его на меньшую вероятность, получаем величину более близкую к нулю и, следовательно, большую. Однако это не создает трудностей, если комбинации с отрицательным матожиданием прибыли просто не принимаются к рассмотрению.

Кроме аддитивной и мультипликативной, существует также селективная свертка, когда для каждого элемента исходного множества принимается в качестве значения свертки наименьшее (или наибольшее) значение из всего набора критериев. В главе 5 мы предложили методику минимаксной свертки для функций полезности. Аналогичные принципы могут использоваться и для свертки критериев.

При расчете свертки не стоит забывать о том, что критерии могут измеряться в разных единицах и иметь различный масштаб величин. Существует несколько способов их приведения к единой мере. Так, можно вычесть из значений критериев их средние значения и разделить на стандартные отклонения (метод нормализации) или же вычесть минимальные (минимальные по данной выборке или минимальные принципиально достижимые) значения, разделив затем на разность между максимальным и минимальным значением (в этом случае значения критерия будут лежать в интервале от нуля до единицы). Первый из предложенных способов более пригоден для построения аддитивной, второй–для мультипликативной свертки.

Еще один подход к построению свертки критериев состоит в нахождении расстояния от данного элемента до некоторого «идеального». Для этого значения критериев приводятся к интервалу (0,1), и предполагается, что идеальный вариант имеет все единичные оценки критериев (т. е. у него достигаются все максимально возможные значения критериев одновременно). Для каждого оцениваемого элемента исходного множества j рассчитываем значение свертки R по формуле

Для проведения описанных ниже исследований мы использовали аддитивную свертку с приведением критериев к единому масштабу методом умножения на поправочные коэффициенты. Это самый простой и грубый способ, но он наиболее приемлем при выполнении разноплановых статистических исследований, поскольку дает легко сопоставимые результаты. Для практической же работы предпочтительно использовать более усовершенствованные методы свертки и нормировки, подобные описанным выше, или другие, здесь не упомянутые.


Яндекс.Метрика
  Альпари Binomo InstaForex
Лучшие брокеры 2018: Брокер «Альпари» Брокер «Binomo» Брокер «InstaForex»
Содержание Далее